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a b s t r a c t 

Chinese font recognition (CFR) has gained significant attention in recent years. However, due to the spar- 

sity of labeled font samples and the structural complexity of Chinese characters, CFR is still a challenging 

task. In this paper, a DropRegion method is proposed to generatea large number of stochastic variant font 

samples whose local regions are selectively disrupted and an inception font network (IFN) with two ad- 

ditional convolutional neural network (CNN) structure elements, i.e., a cascaded cross-channel parametric 

pooling (CCCP) and global average pooling, is designed. Because the distribution of strokes in a font im- 

age is non-stationary, an elastic meshing technique that adaptively constructs a set of local regions with 

equalized information is developed. Thus, DropRegion is seamlessly embedded in the IFN, which enables 

end-to-end training; the proposed DropRegion-IFN can be used for high performance CFR. Experimental 

results have confirmed the effectiveness of our new approach for CFR. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Font recognition plays an important role in document analy-

is and recognition of character images. It is also fundamental to

raphic design, as font is a core design element of any printed or

isplayed text. However, font recognition has long been neglected

y the vision community, despite its importance. Font recognition

s an inherently difficult and error-prone task because of the huge

umber of available fonts, the dynamic and open-ended properties

f font classes, and the very subtle and character-dependent dif-

erences among fonts [1] . Over the years, some approaches to font

ecognition have been proposed [2–11] , but most font recognition

esearch has been carried out on text in Western languages, and

he approaches proposed have not yielded satisfactory accuracy.

ecause of the structure and ideographic nature of individual Chi-

ese characters, Chinese font recognition is more challenging than

ecognition of most Western scripts. The limited number of previ-

us studies [5,9–10,11,43] of Chinese font recognition have mostly

pproached the problem from a document analysis perspective,

hich makes the results highly sensitive to noise and only applica-

le to simple cases with strong constraints. In this study, therefore,

e approached the development of a more effective automatic Chi-

ese font recognition method from a computer vision perspective. 
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Recently, deep convolutional neural networks (CNNs) have

chieved great success in many computer vision tasks, such as

mage classification [12–16,20] , handwritten character recognition

22,24,31,37,44] , and object detection [25,26,34,40] . These CNN

ethods receive raw data and automatically learn the represen-

ations needed for specific tasks. Beyond the conventional pattern

nalysis pipeline, which involves feature extraction and a classi-

er design, a CNN is a type of end-to-end representation learn-

ng framework. Font recognition, on the other hand, can be re-

arded as a special form of image classification problem. Based on

his analysis, we consider Chinese font recognition as a represen-

ation learning problem modeled by CNNs. The current explosion

f research on the use of CNNs for deep learning in computer vi-

ion has produced many good examples of CNN networks, includ-

ng AlexNet [12] , the Zeiler and Fergus model [13] , VGGNet [14] ,

oogleNet [18] and others. However, use of these networks is not

uaranteed to result in improved performance. Careful design of a

NN-based network is required for the specific task of Chinese font

ecognition. 

An inception-type network is at the core of most state-of-the-

rt computer vision solutions based on CNNs [15,17] . This inception

rchitecture has made it feasible to use CNN-based solutions in

ig-data scenarios to achieve higher performance without adding

xtra complexity. The basic inception-style building block intro-

uces parallel structures that run convolutional layers on several

ifferent scales, plus an extra pooling layer, and concatenates their

esponses. In this way, the impact of structural changes on nearby

omponents is mitigated to adapt to the diversity of data samples.
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.10.018&domain=pdf
mailto:eehsp@scut.edu.cn
mailto:z.zhuoyao@mail.scut.edu.cn
mailto:eelwjin@scut.edu.cn
mailto:potatoandleave@163.com
mailto:wang.haobin@mail.scut.edu.cn
https://doi.org/10.1016/j.patcog.2017.10.018


396 S. Huang et al. / Pattern Recognition 77 (2018) 395–411 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

c  

e  

t  

t  

s  

t  

t  

r  

t  

d  

t  

t  

m  

p  

a  

v  

o  

f  

a  

s

p  

l  

u

2  

f  

s  

e  

c  

s  

t  

u  

m  

t  

p  

h  

c  

e  

o  

o

 

t  

i  

i  

d  

[  

m  

f  

e  

D  

C  

h  

n  

m  

t  

w  

B  

v  

p  

u  

m  

b  

t  

s  

t  
Chinese characters are characterized by their elaborate structures.

These structures are rendered on different scales of local patches,

comprehensively reflecting font identification information. There-

fore, it is reasonable to assume that inception is a suitable net-

work structure choice for Chinese font recognition. The general de-

sign principles of inception-type networks have been presented in

previous studies [15,17] . Research to date has not shown, however,

that use of an inception-type network, e.g., GoogleNet, will yield

significant quality gains in practical scenarios. To this end, an in-

ception font network (IFN) was constructed in this study specifi-

cally for use in Chinese font recognition. 

It has been determined empirically that a classifier can distin-

guish characters correctly even when they are partially obscured.

This capability is similar to that of human beings, who can cor-

rectly discriminate a visual object using the surrounding context.

In other words, regardless of whether a local region exists, the font

category is not changed. Inspired by the above observation and

analysis, we sought to improve generalization performance by in-

troducing disrupted samples during the training phase of the IFN.

In this study, we formulated this occlusion process as DropRegion.

Specifically, during the training process, one image is divided into

several regions. Then, one or more local regions are randomly se-

lected and destructed by a type of noise. This process is embedded

in the IFN, and the whole framework can be trained end to end

by back propagation and stochastic gradient descent. It has been

observed that printed characters pose a variety of spatial layouts,

while the stroke information over the character image centroid is

significantly more compact than at the boundary. To cater to the

distribution characteristics of character structures, we developed

an elastic mesh technique for programming the region division in

DropRegion. Basically, an elastic mesh technique is used to divide

an image elastically into several parts, ensuring that each part con-

tains an equal amount of information. 

To summarize, we present a new approach to Chinese font

recognition, DropRegion-IFN, that integrates an IFN and a new

model regularization method called DropRegion, which randomly

removes several elastically sized regions from the characters of an

original Chinese character prototype while retaining the identity

information contained in it. The proposed DropRegion implements

data augmentation, thus improving the generalized applicability of

the CNN-based network model and preventing model overfitting.

Furthermore, we introduce IFN for sufficient feature representation,

which caters to the DropRegion training mode and specifically con-

siders the Chinese font recognition task. 

The remainder of this paper is organized as follows. Related

research is summarized in Section 2 . The proposed DropRegion-

IFN method is described in Section 3 . Single character-based

and text block-based font recognition schemes are described in

Sections 4 and 5 , respectively. Experimental results are presented

in Section 6 . Conclusions drawn from the results of the research

are presented in Section 7 . 

2. Related studies 

Researchers typically regard font recognition as a pattern recog-

nition task that involves feature extraction and classifier design.

Various methods that emphasize feature extraction or classifier de-

sign have been proposed in the font recognition field [6-10] . For

example, Cooperman [6] used local detectors to identify regions

that have typographic properties (e.g., serif, boldness, and italics).

Zramdini et al. [7] employed a scale-invariant feature transform

algorithm to build an Arabic font recognition system. Zhu et al.

[8] extracted the texture features of a text block containing sev-

eral characters using a group of Gabor filters. Ding et al. [9] ex-

tracted wavelet features from a text image using a method that

yielded good performance with text images of different sizes. Tao
t al. [10] used multiple local binary patterns to describe the dis-

riminative information in a text block. These studies focused on

xtraction of different features, which suggests that typeface fea-

ure descriptors dictate the accuracy of font recognition. Beyond

hese conventional feature extraction methods, the biologically in-

pired feature manifold scheme [47-48] provides a better alterna-

ive for the font classification task. However, some useful informa-

ion may easily be lost because of the fixed handcrafted feature

epresentation rule or manifold dimension reduction. Several at-

empts to improve overall classification performance have involved

esigning complex learning algorithms that are performed on ex-

racted features. Zhu et al. [8] applied a weighted Euclidean dis-

ance classifier to Chinese font information. Ding et al. [9] used

odified quadratic discriminant functions to enhance classification

ower. Slimane et al. [3] used Gaussian mixture models to build

n Arabic font recognition system. Zhang et al. [11] used a support

ector machine to distinguish among 25 types of Chinese fonts. All

f these studies involved the usual approach of feature extraction

ollowed by classifier design, which requires careful engineering

nd considerable domain knowledge and being separated into two

tages completely. 

Going beyond the “feature extraction plus classifier design”

ipeline, CNNs have been used in end-to-end approaches to jointly

earn features representation and as a classifier. CNNs have been

sed with great success in the field of computer vision [12–15,17–

1] . However, to the best of our knowledge, there is no Chinese

ont recognition method based on CNNs, although one related

tudy [1] proposed the use of CNNs for Roman alphabets. Wang

t al. [1] developed the DeepFont system, which relies on hierar-

hical deep CNNs for domain adoption to compensate for real-to-

ynthetic domain gaps and improve Roman character font recogni-

ion. This system employs a basic CNN that is similar to the pop-

lar AlexNet structure for ImageNet [12] . Another system worth

entioning is the principal component 2DLSTM (2-D long short-

erm memory) algorithm proposed by Tao et al. [43] , in which a

rincipal component layer convolution operation is introduced to

andle noisy data and take advantage of 2DLSTM to capture the

ontrast between a character trajectory and the background. How-

ver, this algorithm applies only to Chinese font recognition based

n single characters; it is not applicable to font identification based

n Chinese text blocks. 

CNNs are hierarchical architectures that are stacked with mul-

iple non-linear modules and have powerful abilities in mapping

nputs to outputs. However, being neural networks, CNNs can eas-

ly become trapped in local minima when inappropriately han-

led. When this happens, degradation of representation learning

27] performance may occur. To improve the generalization perfor-

ance or reduce overfitting, researchers have proposed several ef-

ective methods, including Dropout [28] , DropConnect [29] , model

nsemble learning [23] , and others. During the training process,

ropout randomly drops a subset of hidden neurons, while Drop-

onnect stochastically excises a subset of connections between two

idden layers. The ensemble method is also an effective tech-

ique for reducing generalization errors by combining multiple

odels. Huang et al. [30] recently developed a training algorithm

hat drops a random subset of layers into a deep residual net-

ork [19] and achieves good performance in reducing overfitting.

astien et al. [31] developed a powerful generator of stochastic

ariations for handwritten character images. Simard et al. [32] ex-

anded the training set by adding elastically distorted samples for

se in visual document analysis. In this paper, we propose a new

ethod called DropRegion to improve generalization performance

y introducing disrupted samples into the training process rather

han by regularizing activations, weights, or layers. In DropRegion,

ome small regions are randomly dropped from the characters, and

he remaining regions are recombined to form a new character. Us-
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ng DropRegion, a large number of new and diverse characters can

e generated from a prototype character, thereby solving the prob-

em of scarcity of labeled font image samples. It should be noted

hat Gidaris et al. [34] applied multiple regions, including the orig-

nal candidate box, half boxes, central regions, border regions, and

ontextual regions, for learning a detection-oriented model. They

laimed that half boxes, which utilize each half of an object, make

he features more robust to occlusions. In our approach, instead of

locking fixed parts (left, right, top, bottom) of an object, a more

exible strategy is adopted that randomly disrupts one or more

mall regions in each text image during the training process. 

Since Google introduced the "inception module" for state-of-

he-art image classification in 2014 [18] , inception has been a cen-

ral component of the deep convolutional neural architecture that

as driven CNN development. The inception architecture has since

een refined in various ways, first by the introduction of batch nor-

alization [35] and later by additional factorization ideas [15] . Fur-

hermore, inception architecture was combined with residual con-

ections to develop Inception-ResNet, which won the first place in

he 2016 ILSVRC classification task competition [17] . A few gen-

ral principles and optimization ideas related to inception are de-

cribed in these studies, but these principles do not necessar-

ly yield performance gains in practical use. It is also impossible

o apply the inception network structure proposed in the above-

entioned studies to a particular application case. To this end,

e explored the potential advantages of designing an inception-

ntegrated network for Chinese fonts, with the goal of improving

FR performance based on high-quality, learned visual features. 

Cascaded cross-channel parametric pooling (CCCP) was intro-

uced by Lin et al. [36] to allow complex and learnable interac-

ions of cross-channel information. CCCP has considerable capabil-

ties in modeling various distributions of latent concepts, using a

etwork-in-network (NIN) structure to achieve better local abstrac-

ion. Another important idea proposed by Lin et al. [36] is global

verage pooling over feature maps, which functions as the coun-

erpart of CCCP. Global average pooling enforces correspondence

etween feature maps and categories, providing a structural reg-

larizer that reduces the effect of overfitting. In this study, we de-

eloped an IFN, equipped with inception, CCCP, and global aver-

ge pooling network structure components, for use in Chinese font

ecognition. This approach was motivated by the following three

spects of the problem: 1) Chinese language has a large set of

haracters, and these characters vary widely in structure and grey-

evel distribution. Because Chinese characters carry font discrimi-

ation information in local structures of different scales with dif-

erent character construction, inception is suitable for application

o CFR because inception employs different kernel sizes to capture

orrelation structures of different scales. 2) Diverse and overlap-

ing strokes can be abstracted well using CCCP. 3) The proposed

ropRegion yields a large number of diverse samples to compen-

ate for the scarcity of labeled training data. To reduce overfit-

ing caused by network complexity, global averaging pooling is em-

loyed as a counterpart to CCCP. 

. Proposed DropRegion-IFN method 

.1. Inception font network 

We have designed an IFN specifically for Chinese font recogni-

ion by combining an inception module, CCCP layers, and global

verage pooling. The structure of the IFN is illustrated in Fig. 1 . 

As Fig. 1 shows, we modified the most common type of incep-

ion module by adding three branches: one 3 × 3 convolution fol-

owed by two stacked 2 × 2 convolutions, two stacked 2 × 2 con-

olutions, and two stacked 3 × 3 convolutions. The first and sec-

nd branches have an effective receptive field of 5 × 5, and the
hird branch has an effective receptive field of 3 × 3. Factorizing

 larger convolution into several smaller convolutions, e.g., factor-

zing 5 × 5 into two stacked 3 × 3 convolutions or factoring 3 × 3

nto two stacked 2 × 2 convolutions, makes it possible to increase

he depth and width of the network while maintaining a consis-

ent computational budget. This application of multi-scale convo-

utional kernels (2 × 2, 3 × 3, and 5 × 5 convolutions) reflects the

asic concept of the inception approach, i.e., that visual informa-

ion should be processed at various scales and then aggregated

o that the subsequent stage can abstract features simultaneously

rom different scales. After the inception module operation, sev-

ral feature maps with the same sizes are obtained by means of

 padding strategy and precise designs. Finally, the feature maps

re concatenated using a concatenation layer. Because of these ad-

itional branches, more non-linear rectification layers can be in-

orporated into our model, enhancing the advantages and feasibil-

ty of the inception module. Furthermore, because of the inception

odule, we can extract local feature representations using more

exible convolutional kernels, which are filters of various sizes or-

anized in a layer-by-layer form. 

Given that Chinese character structure is of critical importance

n font recognition, we use multiple CCCP layers, as shown in

ig. 1 . Pairs of adjacent CCCP layers are stacked together, and an

xtra traditional convolution layer is added below each pair of

CCP layers, resulting in a micro neural network (referred to as

lpconv in paper [36] ) to abstract the data within the underly-

ng patch. Nonlinear activation functions (ReLU) are embedded be-

ween the CCCP layers, increasing the level of abstraction. This mi-

ro neural network takes the place of a traditional convolution ker-

el, sliding over the input, obtaining the feature maps, and feed-

ng into the next layer. This sliding mode makes the micro net-

ork shared among all the local receptive fields. As Fig. 1 shows,

 total of three micro neural networks are used in our IFN, two

f which are stacked below the inception module and the third

f which is stacked on top of it. The layout of the micro neural

etwork in relation to the core inception module is intended to

chieve better abstraction for features of all levels. The last micro

eural network is covered by an additional layer of 1 × 1 convolu-

ions to reduce the representational dimension to the number of

ont categories. Thus far in the process, explicit confidence maps

or all of the Chinese font categories are obtained. The final step is

lobal average pooling for each map to obtain the resulting confi-

ence vector that corresponds to the font categories, saving a large

umber of parameters. As described in [36] , global average pooling

an be viewed as a structural regularizer that reduces overfitting.

he architectural parameters tuned specifically for single character-

ased and text block-based Chinese font recognition are shown in

ables 1 and 2 , respectively, in Section 5 . 

.2. DropRegion 

The idea of multiple regions—including the original candidate

ox, half boxes, central regions, border regions, and contextual

egions—was used by Gidaris et al. [34] to train a detection-

riented model. They proved that using half boxes is an effective

ay to improve occlusion detection performance. In our approach,

nstead of blocking fixed parts (left/right/top/bottom) of an object,

e adopt a more flexible scheme to randomly disrupt one or more

mall regions of a text image. First, an elastic meshing technique

s used to divide a character or text block image into a set of

mall regions. Each region contains an equal amount of informa-

ion. Next, a well-designed strategy guides the algorithm in dis-

upting the selected region. During the training phase, it is un-

ertain which regions are blocked because the algorithm permits

locking of any text image region in each iteration. Consequently,

he training set size is effectively increased, and the diversity of
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Fig. 1. Schematic illustration of IFN structure. 

Table 1 

Network parameters for single-character font recognition 

( SingleChar-IFN ). 

SingleChar-IFN 

Type Settings Output size 

Input 64 × 64 × 1 

Conv 1 96 × 7 × 7 58 × 58 × 96 

CCCP 1_1 96 × 1 × 1 58 × 58 × 96 

CCCP 1_2 96 × 1 × 1 58 × 58 × 96 

Max - pooling 3 × 3, st. 2 29 × 29 × 96 

Conv 2 256 × 7 × 7 23 × 23 × 256 

CCCP 2_1 256 × 1 × 1 23 × 23 × 256 

CCCP 2_2 256 × 1 × 1 23 × 23 × 256 

max - pooling 3 × 3, st. 2 11 × 11 × 256 

Modified Inception detailed in Fig. 1 11 × 11 × 604 

Conv 3 512 × 3 × 3, pad 1 11 × 11 × 512 

CCCP 3_1 512 × 1 × 1 11 × 11 × 512 

CCCP 3_2 512 × 1 × 1 11 × 11 × 512 

Dropout 0.5 

Conv 4 d × 1 × 1 11 × 11 × d 

Global Ave Pooling 11 × 11 1 × 1 × d 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Architectures of the text block network ( TextBlock-IFN ). 

TextBlock-IFN 

Type Settings Output size 

Input 128 × 128 × 1 

Conv 1 96 × 7 × 7, st. 2 61 × 61 × 96 

CCCP 1_1 96 × 1 × 1 61 × 61 × 96 

CCCP 1_2 96 × 1 × 1 61 × 61 × 96 

Max - pooling 3 × 3, st. 2 30 × 30 × 96 

Conv 2 256 × 7 × 7 24 × 24 × 256 

CCCP 2_1 256 × 1 × 1 24 × 24 × 256 

CCCP 2_2 256 × 1 × 1 24 × 24 × 256 

max - pooling 3 × 3, st. 2 11 × 11 × 256 

Modified Inception Detailed in Fig. 1 11 × 11 × 604 

Conv 3 512 × 3 × 3 11 × 11 × 512 

CCCP 3_1 512 × 1 × 1 11 × 11 × 512 

CCCP 3_2 512 × 1 × 1 11 × 11 × 512 

Dropout 0.5 

Conv 4 d × 1 × 1 11 × 11 × d 

Global Ave Pooling 11 × 11 1 × 1 × d 
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the training samples is enriched, which reduces overfitting. More

importantly, the machine is guided in learning a greater number

of invariant features, regardless of the existence of a certain local

part. 

3.2.1. Elastic meshing 

Let us consider a gray-level image as a mapping, I : D ⊂ Z 

2 → S,

where typically S = { 0 , 1 , .., 255 } . A naiv e method is used t o di-

vide the image into L × L equal rectangular regions; i.e., the area

of each region is equal. We call this method a fixed meshing divi-

sion. However, we determined experimentally that, in most cases,

the randomly selected region is the background, which does not

contain character information. This is because the centroid of a

Chinese character image typically contains many strokes, whereas

the boundary contains few strokes. To visualize this property, 3866

commonly used Chinese characters in 25 fonts were averaged. The
nal average image is shown in Fig. 2 . Few strokes exist at the

oundary, whereas many strokes exist at the centroid. It is inter-

sting to note that the average character is not a Gaussian-like dis-

ribution, which was unexpected. 

To address the uneven distribution of strokes or information in

hinese characters, an elastic meshing division method was devel-

ped. This elastic meshing technique has previously been applied

o shape normalization in handwritten character recognition [37–

9] and has been found to be a simple and effective preprocessing

echnique. Elastic meshing division for shape normalization makes

t possible for each mesh to contain an equal distribution of the

troke histogram. In our system, elastic meshing is used to gener-

te a set of regions adaptively, so that the regions contain equal

mounts of information. The information is not limited to the ge-

metric area, and it can be generalized to any type of feature. In

his study, for simplicity, the information in each region was mea-
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Fig. 2. Heat map of average of Chinese characters. Each character image was first 

inverted so that the background intensity was 0 and the stroke intensity was 255. 

The character images were then resized to 64 × 64. Finally, the element-wise aver- 

age of these resized images was computed. 

Fig. 3. Elastic meshing technique applied to one Chinese character. 
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Algorithm 1 Optimization for the DropRegion embedded IFN. 

Require : Iteration number t = 0 . Training dataset { ( x 1 , y 1 ) , . . . , ( x N , y N ) } , 
x n ∈ R D and y n ∈ { 0 , 1 , . . . , K } . Learning rate is αt . 

Ensure : 

Network parameters �. 

1: repeat 

2: t ← t + 1 ;
3: Randomly select a subset of samples from training set, namely a mini-batch. 

4: for each training sample do 

5: if rand(0,1) < γ

6: Perform elastic meshing division and obtain L × L regions; 

7: Randomly select a number of regions and disrupt these regions; 

8: end 

9: Perform forward propagation to obtain φn = f ( �, x n ) . 

10: end for 

11: �W = 0 . 

12: for each training sample in a mini-batch do 

13: Calculate partial derivative with respect to the output: ∂ J 
∂ φn 

. 

14: Run backward propagation to obtain the gradient with respect to the 

network parameters: ��n . 

15: Accumulate gradients: �� := �� + ��n . 

16: end for 

17: �t ��t−1 − αt ��. 

18: until converge. 
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ured by the accumulated pixel intensity. To equalize the accumu-

ated pixel intensities in the regions, we first calculate the projec-

ion profile histogram on each axis. Fig. 3 illustrates the applica-

ion of the elastic meshing technique to one character. Because the

peration on the x axis is the same as that on the y axis, only

he operation on the x axis is explained here. Let φ( x ) denote the

unction for computing the projection profile histogram along the

 axis, which is written as follows: 

( x ) = 

H ∑ 

y =1 

I ( x, y ) , (1) 

here H is the image height. Next, the image is horizontally di-

ided into L bars. We intend for the information in these bars to be

qual. That is, each bar contains 1 
L 

∑ W 

x =1 φ(x ) information. Hence,

he sum of the information from the first bar to the i th bar can be

xpressed as follows: 

 ( u i ) = 

i 

L 

W ∑ 

x =1 

φ( x ) , (2) 

here i ∈ {1, .., L } and u i denotes the position along the x axis that

orresponds to the i th bar. (Note that { u 1 , u 2 , . . . , u L } is a set of

reaking points that divides a character image into L bars.) T ( u )
i 
an be formulated as an accumulated distributed function as fol-

ows: 

 ( u i ) = 

u i ∑ 

x =1 

H ∑ 

y =1 

I ( x, y ) . (3) 

Finally, u i is solved by substituting Eq. (2) with Eq. (1) and

hen substituting Eq. (3) with Eq. (2) . In the same manner as

 u 1 , u 2 , . . . , u L } is determined, a set of breaking points along the

 axis, namely, { v 1 , v 2 , . . . , v L } , can be determined. 

.2.2. DropRegion strategy 

Inspired by Dropout [28] , we designed a similar strategy that

e called DropRegion. First, an image is selected. If a random num-

er is greater than DropRatio , γ , the image requires further pro-

essing. Second, elastic meshing is performed on the image. Third,

 ( n ≥ 1) local regions are randomly selected and disrupted by one

ype of noise. For simplicity, the randomly selected region is dis-

upted by multiplication using an all-zero mask. With these ad-

itional samples, the IFN can still be optimized in an end-to-end

anner by stochastic gradient descent and back propagation. The

roposed DropRegion algorithm is presented as Algorithm 1 at the

nd of this section. 

To illustrate the proposed DropRegion algorithm, we consider

 CNN with an input image x , where x ∈ R d × d . When DropRegion

s applied, it can be written as M � x , where � is the element-wise

roduct and M is a binary matrix that encodes the disruption in-

ormation and can be expressed as follows: 

 = 

⎡ 

⎣ 

m 11 · · · m 1 L 

. . . 
. . . 

. . . 
m L 1 · · · m LL 

⎤ 

⎦ . (4) 

here m ij is a sub-block matrix of M . Note that some sub-block

atrixes are randomly set as all-zero matrixes, whereas others

re all-one matrixes. In other words, M has C 

n 
L ×L 

types of pat-

erns and M ∼ U (0, 1). From that starting point, the DropRegion

rocesses an input image x in a convolutional manner as follows:

 

1 
j = g 

(
( M � x ) ∗ k 

1 
j + b 

1 
)
, (5) 

here x 1 
j 

is the j th feature map of the first convolutional layer, k 

1 
j 

s the convolutional kernel connected to the j th feature map, b 1 is
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Fig. 4. Method by which DropRegion affects the convolutional layers. “Ker.”

represents the number of convolutional filters and their receptive field sizes 

(“num × size × size”), “St.” is the stride size, and black pixels are zeroes. 
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the bias vector of the first convolutional layer, and g ( · ) is a non-

linear activation function. The receptive field corresponding to each

unit of the feature map is a region in the input image. Let r denote

this region. If r is disrupted by an all-zero mask, m , and b 1 is set

as an all-zero vector, then g( ( m � r ) ∗ k 

1 
j 
+ b 1 ) = 0 . This is because

many commonly used activation functions, such as the tanh, cen-

tered sigmoid, and rectified linear units (ReLU) [41] functions, have

as a property g(0) = 0 . 

The above process is illustrated in Fig. 4 . The 2 × 2 black re-

gion in each feature map of the Conv1 layer is obtained by con-

volution with 32 kernels 5 × 5 in size. The region is then passed

to an activation function. Similarly, the 1 × 1 black pixels in the

feature maps of the Conv2 layer are obtained by convolution with

64 kernels 2 × 2 in size. The pixels are then passed to an activa-

tion function. Note that the receptive field of the black units in

the Conv2 layer is the disrupted region in the input image. That

is, DropRegion causes the neurons in the deeper layers to become

zeroes. Accordingly, DropRegion can be regarded as a special case

of Dropout; it differs, however, in that it acts on convolutional or

pooling layers. 

Given input data x , the overall model, f ( x ; θ, M ), outputs a re-

sult, y , via a sequence of operations (e.g., convolution, nonlinear

activation). The final value of y is obtained by summing over all

possible masks, as follows: 

y = γ f 
(
x ; θ

)
+ ( 1 − γ ) E M 

[
f 
(
x ; θ, M 

)]
, (6)

where E M 

[ f ( x ; θ, M ) ] can be written as follows: 

E M 

[
f 
(
x ; θ, M 

)]
= 

∑ 

M 

p ( M ) f 
(
x ; θ, M 

)
. (7)

Eq. (6) reveals the mixture model interpretation of DropRegion,

where the output is a combination of f ( x ; θ) and f ( x ; θ, M ). 

A connection exists between DropRegion and some previous

data augmentation techniques. Krizhevsky et al. [12] enlarged a

training set by performing tenfold cropping in one image and jit-

tering the intensity of each image pixel. Bastien et al. [31] in-

creased the richness of a training set using stochastic variations

and noise processes (e.g., affine transformations, slant, etc.). Simard

[32] expanded the training set for a neural network using an elas-

tic transformation method. All of these methods have one charac-

teristic in common, namely, they increase the training sample di-

versity and thus effectively reduce overfitting. 

We can assess the augmentation capability of DropRegion as

follows. Assume a character image is divided into L × L regions

by an elastic meshing technique, and n ( n < L × L ) regions are ran-

domly disrupted. The number of possible combinations of the re-

maining regions is then C n 
L ×L 

. We add all possible combinations

to yield no more than n regions of disruption. We obtain a to-

tal of 
∑ n 

i =1 C 
i 
L ×L 

= 2 n variant samples. That is, the number of di-
erse samples is increased 2 n fold during the training phase, which

emonstrates considerable augmentation capacity. As described

reviously, DropRegion disrupts the original topological structure

f characters; nevertheless, it preserves the font information for

ater recognition. Intuitively, using these partially destroyed sam-

les, the model is guided to capture more invariant representation,

egardless of the presence or absence of one partial region. 

. Single-character-based font recognition 

We observed that more than one font is applied in a text block

n many Chinese documents. To highlight a particular document

uthor’s intention, certain characters in a sentence may appear in

 different font. For example, specific characters may be printed in

oldface, while others in the same sentence may appear in a regu-

ar typeface. To handle these situations and provide greater flexibil-

ty, it is necessary to design a font recognizer for single unknown

hinese characters. 

The parameters of the IFN designed for single-character font

ecognition are listed in Table 1 . The network is abbreviated as

ingleChar-IFN . This network contains four convolutional layers, six

CCP layers, one modified inception module, and one global av-

rage pooling layer. The settings for each of the convolutional

ayers (“conv”) are given in three sub-rows. The first represents

he number of convolutional filters and their receptive field sizes

“num × size × size”), the second indicates the convolution stride

“st”), and the third denotes spatial padding (“pad”). When stride is

qual to 1 or no padding is executed in the convolution operation,

he corresponding “st” or “pad” sub-row is omitted. The same is

rue for the CCCP layer. The settings for the maximum pooling are

pecified as their kernel size (“size × size”) and stride size (“st”). A

imilar arrangement is used for the global average pooling layer,

xcept that no stride is necessary, as the pooling is globally ex-

cuted over the entire feature map. The setting for the dropout

s specified as the dropout rate, which is in fact a regularization

peration executed over the adjacent lower layer. SingleChar-IFN

akes 64 × 64 Gy images as input and outputs d dimensional vec-

ors where d denotes the number of font categories. Unless other-

ise stated, the parameter values for DropRegion in SingleChar-IFN

ere set to L = 5 and γ = 0 . 5 . 

. Text block-based font recognition 

The basic idea of text block-based font recognition is initial seg-

entation of the text block into separate characters and recog-

ition of the single character font. To this end, a CFR system

ased on character segmentation is described. The original image

s transformed into a binary image by an adaptive thresholding al-

orithm. Next, dilation and erosion operations are performed on

he binary images to remove noise and connect the different parts

f one character. In addition, horizontal and vertical projection pro-

les are successively applied. The goal of using the horizontal pro-

ection profile is to determine each text line, while that of using

he vertical projection profile is to locate characters. Once the char-

cters are located, font classification is performed on each charac-

er through SingleChar-IFN . The final result is obtained by averaging

0 confidence vectors. Multiple samples are used together to make

he decision. This can be understood as an ensemble method that

mproves the model robustness. However, segmentation-based text

lock font recognition is limited in that it depends on the segmen-

ation procedure and thus increases the complexity of recognition

ethods. To address this issue, we developed a segmentation-free

ont recognition system called TextBlock-IFN . A flowchart of the sys-

em is shown in Fig. 5 . The parameters of TextBlock-IFN are out-

ined in Table 2 . For the training phase, 128 × 128 patches are ran-

omly cropped from one 384 × 320 text block image (a detailed
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Fig. 5. Flowchart of segmentation-free text block font recognition. 
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escription of the text block samples are given in Section 6.1 ).

hese 128 × 128 patches are then disrupted by the DropRegion

ethod. In a manner similar to the process for training SingleChar-

FN , the DropRegion parameter values in TextBlock-IFN are set to

 = 5 and γ = 0 . 5 . 

For the testing phase, we designed a multiple-decision fu-

ion method combined with a sliding window approach. A slid-

ng window was used to crop the image patches. The window size

as 128 × 128, and the stride was 64 pixels. Using the sliding win-

ow, 20 cropped image patches were obtained from one text block.

hese cropped image patches were used as inputs to TextBlock-IFN .

he output was a d -dimensional ( d -D) confidence vector for each

ropped patch. An averaging ensemble was adopted to enhance the

odel robustness. We applied element-wise accumulation to the

 -D confidence vectors. 

. Experiments 

.1. Datasets 

To the best of our knowledge, no publicly available datasets

xist for Chinese font recognition. Thus, we propose two meth-

ds to construct both single character and text block Chinese font

atasets. One is based on Microsoft Word software editing and im-

ge scanning to form neat synthetic datasets, and the other is a

cene-guided text rendering method borrowed from [45] to form

erisimilar real image datasets. 

.1.1. Neat synthetic datasets 

We collected data samples from scanned documents to build

 scanned Chinese font database, called SCF_DB_25. The database

as constructed according to the following five steps. (1) A to-

al of 3866 commonly used Chinese characters were edited with

5 font styles using the Microsoft Word software. The 25 fonts

ere Hei, YaHei, XiHei, YueHei, MeiHei, YaYuan, XingKai, Kai, Fang-

ong, Song, ZhongSong, ZongYi, HuoYi, CuQian, GuangBiao, Huang-

ao, HuPo, LingXin, Shu, WeiBei, XinWei, YaoTi, YouYuan, LiShu,
nd ShuangXian. (2) The characters were then printed on paper

nd scanned as images. (3) The Hough line detector algorithm was

sed to align the images. (4) An image dilation method was used

o connect adjacent characters. As a result, each text line was lo-

ated using a horizontal projection profile, and each character was

ocated using a vertical projection profile. (5) The character images,

ogether with a number of annotations (including character cate-

ory, font category, etc.), were saved in the database. After these

teps were completed, we obtained a total of 96,650 font samples

n SCF_DB_25. Furthermore, to validate the robustness of the pro-

osed method for the dataset with much more variation, we ex-

ended the SCF_DB_25 to a much larger dataset called SCF_DB_280

hat covered 280 Chinese font categories. The associated font in-

ormation came from the collection of SCUT-SPCCI [22] created by

ur research group and the characters were the same as those in

CF_DB_25. As a result, there were a total of 1,082,480 samples in

CF_DB_280. 

For text block-based font recognition, we also constructed a

asic dataset called SCF_TDB_25 and an extended dataset called

CF_TDB_280. They included 25 and 280 Chinese font categories,

espectively. A total of 320 blocks were composed for each font

sing 320 Tang poems, where one Tang poem corresponded to one

ext block consisting of six lines. Each line contained five charac-

ers. The characters not belonging to the set of 3866 characters

ere ignored. If the character number of one poem was less than

0, it was repeated from the beginning of the poem. Fig. 6 shows

ome synthetic text block samples from SCF_TDB _25. Also, we

an calculate that total 80 0 0 and 89,60 0 samples are included in

CF_TDB_25 and SCF_TDB_280, respectively. 

.1.2. Verisimilar real image datasets 

Most attainable real-world text images do not have font label

nformation, and the error-prone font labeling task requires font

xpertise that is out of reach of most people. Therefore, collecting

nd labeling real-world examples is very difficult [1] . However, re-

ent work in [45] inspired us with a new solution for verisimilar

eal image font sample generation. 
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Fig. 6. Text block samples from SCF_TDB _25. 
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This font sample generation process started by acquiring

the 3866 commonly used Chinese characters, as mentioned in

Section 6.1.1 , and downloading 80 0 0 background images, as men-

tioned in [45] . These background images were extracted from

Google Image Search using queries related to different ob-

jects/scenes, and indoor/outdoor and natural/artificial locales [45] ,

exhibiting sufficient variation. Then the proposed image compo-

sition engine in [45] was applied to generate scene-text images,

in which the Chinese character samples were blended into those

background images using Poisson image editing [46] . During the

process of blending, the character samples were rendered using

our selected font, and transformed according to combined informa-

tion from, for example, the local surface normal, dense pixel-wise

depth map, and region’s color of those background scenes. Next,

the bounding boxes for each character were cropped from the syn-

thetic scene text images to form single character font samples. Fi-

nally, visually almost invisible text samples were discarded using

manual inspection. The filtered out samples composed a verisim-

ilar real image dataset for Chinese characters called the Verisimi-

lar Real Image Chinese Font Character dataset (VRICFChar). Fig. 7

shows examples from VRICFChar. From this figure, it can be ob-

served that the generated font images have large appearance vari-

ations, including scaling, background clutter, lighting, noise, per-

spective distortions, orientations, and compression artifacts [1] . All

the variations were inherited from the various scene images in the

procedure of text rendering because this procedure was guided

by the background images. Complex interactions of text content

with background were also integrated in the generating process to

r  
ake the font samples nearly real images. A total of 30 font cate-

ories were used, of which 25 came from the dataset mentioned in

ection 6.1.1 . Among the 25 categories, only “HuangCao” and “Shu”

ere handwritten typefaces; the remaining 23 categories were all

rinted. To verify the robustness of the proposed method for hand-

ritten font types, we added five well-known handwritten type-

aces to form the verisimilar real image font datasets, that is, Chen-

ishi, Chenxudong, Jingboran, Maozedong, and Xujinglei. Similarly,

e constructed a text block font dataset, VRICFTextblock. Source

ext for VRICFTextblock came from the aforementioned 320 Tang

oems instead of single Chinese characters. Fig. 8 shows examples

f real text block font images. 

Additionally, Table 3 provides the statistics of VRICFChar and

RICFTextblock. It can be observed that the font sample number

aried with different font types. Moreover, it can be calculated

hat 286,987 and 21,546 samples were included in the VRICFChar

nd VRICFTextblock datasets, respectively, by setting the maximum

umber of allowable segmented regions to five in the blend proce-

ure. 

.2. Data preprocessing and experiment setting 

.2.1. Data preprocessing 

All the single character font samples from neat synthetic

atasets were resized to 60 × 60. Then, each image was padded

ith two pixels in the boundary; hence, the input image for

ingleChar-IFN was 64 × 64. All the text block font samples were

esized to 384 × 320, which was well matched in proportion to
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Fig. 7. Font samples of a single Chinese character from the VRICFChar dataset. 

Fig. 8. Sample images of text blocks from the VRICFTextblock dataset. 

Table 3 

Font sample numbers for VRICFChar and VRICFTextblock. 

Font Type SRICFChar SRICFTextblock Font Type SRICFChar SRICFTextblock 

Hei 11,025 672 HuPo 9873 626 

YaHei 8423 300 LingXin 7264 782 

XiHei 8781 251 WeiBei 10,844 862 

YueHei 10,511 589 XinWei 9611 1139 

MeiHei 10,355 762 YaoTi 10,191 968 

YaYuan 10,685 524 YouYuan 9056 562 

XingKai 8772 982 LiShu 8178 783 

Kai 8956 349 ShuangXian 6701 697 

FangSong 11,682 792 HuangCao 7875 516 

Song 8543 310 Shu 13,595 1404 

ZhongSong 10,105 303 Chenjishi 11,665 639 

ZongYi 11,483 570 Chenxudong 6656 1214 

HuoYi 10,228 457 Jingboran 6854 661 

CuQian 8834 855 Maozedong 10,235 1147 

GuangBiao 10,776 1046 Xujinglei 9230 784 
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Table 4 

Recognition accuracies (%) of IFN and other baseline networks (Basic-CNN, Deep- 

FontNoD, MDLSTM, and GoogleNet) for single-character images. 

TrNum IFN Basic-CNN DeepFontNoD MDLSTM GoogleNet 

200 89.34 83.64 73.00 73.52 80.57 

400 91.54 88.06 80.51 78.20 86.05 

10 0 0 93.59 92.85 90.00 81.28 94.98 
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a single character because each Tang poem had six lines and five

columns. 

Different from the neat synthetic data, more sophisticated pre-

processing steps had to be performed on the verisimilar real im-

age datasets because the images from these datasets typically

had much larger appearance variations, for example, scaling, back-

ground clutter, lighting, noise, perspective distortions, orientations,

and blur. The preprocessing process is described as follows: First,

both single character and text block font images were tilt corrected

using affine transformation. Then, they were separately enhanced

on their RGB color channels by means of histogram equalization.

The three enhanced color channels were recombined to form a

new color image. Then, single character sample images were nor-

malized into 64 × 64 and text block font images were normalized

into 384 × 320. Finally, all the color samples were converted into

grayscale as the input to SingleChar-IFN or TextBlock-IFN . 

6.2.2. Experiment setting 

All the training/testing splits were performed according to the

source text for each font category; that is, there were no com-

mon Chinese characters or Tang poems in the training and test-

ing datasets for convincing all the experiments. Specifically, each

source character or Tang poem corresponded to one sample image

for each font in the neat synthetic datasets. Therefore, the sample

size for each font was equal to the number of source texts, for ex-

ample, 3866 samples per font in SCF_DB_25 and SCF_DB_280; and

320 samples per font in SCF_TDB_25 and SCF_TDB_280. The sit-

uation was different for the verisimilar real image datasets. Each

source text, regardless of whether it was a single character or text

block, generally corresponded to several font samples. Therefore, a

random training/testing split according to the source text could re-

sult in a difference in sample size used for training and testing. We

denote the source text number for training by TrNum and testing

by TsNum . 

We implemented our algorithm based on the Caffe [42] frame-

work. The learning rate was updated as follows: 

l r = base _ l r ×
(

1 − iter 

max _ iter 

) factor 

, (8)

where base _ lr , max _ iter , and factor were set to 0.01, 1.5e5, and

0.5, respectively. The momentum was set to 0.9, and the weight

decay rate was set to 2e-4. 

6.3. Results 

6.3.1. Single-character-based font recognition 

This part of the experiment was designed to achieve two goals.

One was to analyze how the behavioral characteristics of the pro-

posed DropRegion-IFN were affected by the IFN network structure,

DropRegion training strategy, and elastic mesh technique. On the

aforementioned basis, a comparison with three baseline methods

was made to validate the overall performance. The corresponding

experiments were conducted on SCF_DB_25. The other goal was

to investigate whether the proposed method was sensitive to font

class size and still effective for verisimilar real font images. Ex-

periments for this purpose were conducted on SCF_DB_280 and

VRICFChar, respectively. 

6.3.1.1. Evaluation of the effect of IFN network structure. We eval-

uated the effectiveness of the proposed IFN network structure in

contributing to the overall performance achieved in Chinese char-

acter font recognition. Four baseline network architectures, sum-

marized as shown in Fig. 9 , were used for comparison. The four are

denoted Basic-CNN, DeepFontNoD, MDLSTM [43] and GoogleNet

[18] . Basic-CNN is a standard CNN architecture consisting of four
tacked convolutional layers, optionally followed by max-pooling,

nd then, ending with a full connection layer feeding into a fi-

al softmax layer. The architectural parameters of Basic-CNN are

he same as that of IFN at the corresponding layer. DeepFontNoD

as the same basic network structure as the DeepFont system

1] , with low-level unsupervised and high-level supervised sub-

etwork decomposition removed. This structure is similar to that

f AlexNet [12] , which serves as an example for the adoption of

 conventional CNN structure instance in the field of font recog-

ition. For MDLSTM, we adopted the same network hierarchy by

epeatedly composing MDLSTM layers with feed-forward layers, as

n [43] . GoogleNet has almost the same settings as in [18] , except

hat the input size is different (64 × 64 vs. 224 × 224). The hyper-

arameters for the last average pooling layer were adjusted from

7 × 7, st. 1” to “2 × 2, st. 1,” as shown in Fig. 9 . The dashed rect-

ngle in the figure represents a repetitive network building block,

hich can be removed from the corresponding network to obtain

 simplifier model for adjusting to training sample scale. For ex-

mple, when TrNum = 200 samples were chosen from each font to

uild a training set, only one NIN building block was retained in

he subsequent experiment setting to adapt to the case of a small

ample size. Two NINs were retained in the case of TrNum = 400,

nd three were retained in the case of TrNum = 10 0 0. A similar

djustment to the building block size was adopted for Basic-CNN

hen comparison experiments were conducted for the purpose of

erification of the network structure design. 

To ensure a fair comparison, we used Dropout for all the

odels, rather than DropRegion. The experimental results for the

ask of single-character-based font recognition are summarized in

able 4 . The results show that the IFN architecture almost always

utperformed all four of the baseline networks for each font for

ample sizes of 20 0, 40 0, and 10 0 0. The results confirm the ef-

ectiveness of our IFN design. As Table 4 shows, Basic-CNN per-

orms much better than DeepFontNoD, even they are homogenous.

his may be because Basic-CNN naïvely adjusts the model size by

dding or removing building blocks to or from the network struc-

ure to adapt to the sample scale. This model size adjustment

cheme was adopted in both IFN and Basic-CNN, but IFN results

n a clear improvement in the accuracy in comparison to Basic-

NN. Therefore, it is of critical importance that the architectural

hoice is elegantly designed for the specific font recognition task.

ompared to MDLSTM, the relative increase in font category recog-

ition accuracy achieved by IFN is up to 22% when TrNum = 200.

he accuracy of GoogleNet was greater than our IFN by approxi-

ately 1.39% when TrNum = 10 0 0. However, the IFN network has

any fewer parameters than GoogleNet (20 M vs. 34 M). To sum-

arize the comparative evaluation of the five various architectures,

he design of our IFN architectural elements is advantageous to

hinese font recognition. 

.3.1.2. Evaluation of DropRegion in comparison to Dropout. We

valuated the regularization effect of Dropout and DropRegion us-

ng SingleChar-IFN . In the experiments, each single image was di-

ided into 5 × 5 regions, and a maximum of 13 regions were ran-

omly dropped. The results are shown in Table 5 . It can be seen

hat Dropout improved the accuracy by 4.18%, 1.36%, and 0.01%

hen 20 0, 40 0, and 10 0 0 training samples, respectively, were used
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Fig. 9. Five network architectures used in our experiments. This plot shows the network structure for the five different baseline models. 
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or each font. DropRegion boosted the accuracy by 12.10%, 7.74%,

nd 5.27%, respectively, for the same numbers of training sam-

les, exhibiting better regularization performance than Dropout.

e also investigated the performance of a combination of DropRe-

ion and Dropout. As Table 5 shows, the combination further im-

roved the classification accuracy. This suggests that Dropout and

ropRegion are complementary when used together. It is worth

entioning that the recognition accuracies we achieved exceeded
hat achieved with Tao’s method [43] , even when we used training

ets only half the size of those used with Tao’s method (e.g., 20 0 0

or each font), based on total data sets of almost the same size. 

.3.1.3. Evaluation of fixed and elastic mesh techniques. We

valuated three different methods using training samples of

ifferent sizes. The methods were SingleChar-IFN, SingleChar-

FN + DropRegion (fixed mesh), and SingleChar-IFN + DropRegion
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Table 5 

Font recognition accuracy (%) of DropRegion and Dropout on single characters. 

TrNum None Dropout DropRegion DropRegion + Dropout 

200 85.16 89.34 97.26 97.31 

400 90.18 91.54 97.92 98.63 

10 0 0 93.59 93.60 98.86 98.98 

Table 6 

Recognition accuracies (%) of different methods for single character images. TrNum 

is the number of training samples for each font. 

TrNum SingleChar-IFN SingleChar-IFN + 

DropRegion (fixed 

mesh) 

SingleChar-IFN + 

DropRegion (elastic 

mesh) 

200 89.34 97.20 97.31 

400 91.54 98.30 98.63 

10 0 0 93.59 98.96 98.98 
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(elastic mesh). The value of the parameter L was fixed or the elas-

tic meshing division was set to 5, and the value of the parameter

γ was set to 0.5. 

The experimental results are presented in Table 6 . For Tr-

Num = 20 0, 40 0, and 10 0 0, the DropRegion method with a fixed

mesh improved the recognition accuracy by 7.86%, 6.76%, and

5.37%, respectively. The DropRegion method with an elastic mesh

improved the recognition accuracy by 7.97%, 7.09%, and 5.39%, re-

spectively. These results suggest that, regardless of whether the

fixed or elastic meshing method is used, DropRegion improves the

capacity of representation learning, especially when the training

samples are small. These two meshing techniques are both effec-

tive, but the results suggest that the elastic meshing method is

slightly superior to the fixed meshing method. 

6.3.1.4. Investigation of number of dropped regions. We investigated

the effect of the number of dropped regions. TrNum is set as 200.

Each single character image is divided into 5 × 5 regions. The max-

imum number of dropped regions, denoted as n , is varied from 1

to 24. Different n represent different increased folds of the vari-

ant sample. The experimental results are shown in Table 7 . The

best recognition accuracy (97.31%) is achieved when the number

of dropped regions is 13. When the number of dropped regions

is less or more than 13 (between 1 and 24), the recognition ac-

curacy is much lower than 97.31%. This is because few stochastic

variations are introduced when the number of dropped regions is

decreased, and the font information is not sufficient for learning a

robust model when the number of dropped regions increases. 

6.3.1.5. Investigation of the number of divided regions. We also in-

vestigated the effect of the number of divided regions. TrNum was

set to 200. Each single character image was divided into L × L

regions, where L = [ 3 , 5 , 7 , 9 , 11 , 13 ] . The maximum number of

dropped regions, denoted as n , was set to L ×L 
2 . The experimental

results are shown in Table 8 . It can be observed that the highest

accuracy of 97.31% was achieved when L = 5 . However, recognition

accuracy fluctuated only slightly with the varied number of divided

regions. The results are reasonable because L only regulated the

precision level of the DropRegion operation. This was true in par-

ticular when n was fixed at L ×L 
2 , that is, always approximately half

of the divided regions were dropped during training in the maxi-

mum case. 

6.3.1.6. Comparison with the baseline methods. We compared per-

formance between the proposed DropRegion-IFN and three base-

line methods, that is, LBP + SVM, BIF + DGPP [47] , and C1 + LPP [48] .

We set L = 5 and n = 13 for DropRegion-IFN for optimal perfor-

mance. For LBP + SVM, we first computed the uniform pattern for
ach pixel in the single character image from a 3 × 3 pixel neigh-

orhood. Then, we counted the histogram of all types of uniform

atterns and normalized the histogram. Thus, an LBP [49] de-

criptor with 59 dimensions was obtained. Finally, a linear SVM

50] classifier was trained to predict the Chinese character font.

n BIF + DGPP [47] , the high-dimensional biologically inspired fea-

ure (BIF) was mapped to a low-dimensional space using man-

fold learning algorithm DGPP [47] (i.e., the dimensionality was

qual to 150), and the pairwise multiclass SVM with a Gaussian

ernel was applied for final font classification. The C1 unit of the

IF was extracted using the same parameters as in [47] . However,

e extracted intensity and color feature maps using c = 1 , 2 , 3

or center levels and s = c + d , with d = 2 for surrounding lev-

ls instead of the parameters used in [47] . This was because of

he small size of the single character image, for example, 64 × 64.

herefore, the BIF contained 25 feature maps, that is, three inten-

ity feature maps, six color feature maps, and 16 C1 units feature

aps. In C1 + LPP [48] , we used the same feature maps as those

n BIF + DGPP and reduced feature dimensionality to 24 using LPP

48] . The nearest neighbor rule was used for the final font classifi-

ation. Additionally, the optimal SVM regularization parameters for

BP + SVM and BIF + DGPP [47] were set to 3.5 and 7, respectively. 

Table 9 summarizes the comparison results for the cases

hen TrNum = 20 0, 40 0, and 10 0 0. From the table, our proposed

ropRegion-IFN method significantly outperformed all three base-

ines in terms of classification accuracy in all cases. Specifically,

he DropRegion-IFN improved by approximately 7% compared with

IF + DGPP in the minimum case when TrNum = 10 0 0. In the max-

mum case, DropRegion-IFN exceeded LBP + SVM by nearly 28%

hen TrNum = 200. Among the three baseline methods, two man-

fold learning-based dimensionality reduction algorithms for font

ategorization obtained essentially the same level of performance,

nd LBP + SVM performed the worst. 

Furthermore, the runtime performance was analyzed. For a fair

omparison, all the experiments were conducted on a 4.0 GHz In-

el i7 CPU with Ubuntu 16.04 and NVIDIA GeForce GTX 1080 GPU.

n Table 10 , we provide the average test time per sample for both

he proposed DropRegion-IFN and all the aforementioned baseline

ethods. For this table, the test time of the baseline algorithms

as calculated based on the CPU running. Specifically, the run-

ing time of two manifold learning based methods involved BIF

eature extraction, dimensionality reduction using DGPP or LPP,

nd prediction of the SVM or NN classifier. The test time for

BP + SVM was equal to the total time cost of LBP feature extrac-

ion and SVM prediction. Differently, we simply ran our deep IFN

n new font images to obtain the score, and further to make font

rediction, by which the process time consumed was the run-

ing time of DropRegion-IFN. Time calculations were performed

or the two cases of running on CPU and GPU respectively. Run-

ing DropRegion-IFN on a CPU was for a fair comparison with the

aseline algorithms. From Table 10 , running DropRegion-IFN on a

PU cost slightly more time than each of the three baseline algo-

ithms. However, the running time of DropRegion-IFN on a GPU

ropped dramatically by two orders of magnitude in comparison

ith the three baseline methods. Among the three baseline meth-

ds, LBP + SVM cost the least time because of its fast LBP feature

xtraction. 

.3.1.7. Investigation of robust performance against the dataset scale 

We justified the adaptability of our method to a much larger

ont class size by conducting experiments on SCF_DB_280. A sim-

lar experimental protocol to that in Section 6.3.1.2 was adopted

or the investigation, that is, TrNum = 20 0, 40 0, or 10 0 0 for each

ont were selected for training and the remainder for testing.

xperimental results using IFN with and without the DropRe-

ion strategy are listed in Table 11 for comparison. Unexpect-
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Table 7 

Evaluation of recognition accuracy (%) achieved by varying the number of dropped regions. 

n 1 2 3 4 5 6 7 8 

Accuracy 90.16 94. 46 95.51 95.80 95.98 96.19 96.28 96.73 

n 9 10 11 12 13 14 15 16 

Accuracy 96.89 96.97 97.12 97.20 97.31 96.92 96.80 96.67 

n 17 18 19 20 21 22 23 24 

Accuracy 96.59 96.35 96.09 95.94 95.87 94.82 93.84 93.49 

Table 8 

Evaluation of recognition accuracy (%) achieved by varying the num- 

ber of divided regions. 

L 3 5 7 9 11 13 

Accuracy 96.84 97.31 96.97 96.97 96.31 95.58 

Table 9 

Recognition accuracy (%) of DropRegion-IFN and three baseline methods. 

TrNum DropRegion-IFN LBP + SVM BIF + DGPP [ 47 ] C1 + LPP [ 48 ] 

200 97.31 69.57 89.56 90.79 

400 98.63 72.57 91.19 91.40 

10 0 0 98.98 75.73 92.47 92.10 

Table 10 

Runtime comparison between DropRegion-IFN and the three baseline methods. 

Method Average testing time per sample (ms) 

DropRegion-IFN (GPU) 0.789 

DropRegion-IFN (CPU) 126.0 

LBP + SVM 16.28 

BIF + DGPP [ 47 ] 88.29 

C1 + LPP [ 48 ] 85.91 

Table 11 

Evaluation of recognition accuracy (%) achieved on 

SCF_DB_280. 

TrNum IFN DropRegion-IFN 

200 97.44 98.98 

400 98.51 99.11 

10 0 0 98.75 99.17 
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dly, the proposed IFN and DropRegion-IFN worked well in all

ases. When TrNum = 10 0 0, IFN achieved high accuracy of up to

9.17% with DropRegion and 98.75% without DropRegion. Even if

he total training samples accounted for only slightly more than

% of the total dataset, corresponding to the case of TrNum = 200,

ropRegion-IFN achieved high recognition accuracy of 98.98%. 

.3.1.8. Performance with verisimilar real font images. We fur-

her evaluated the effectiveness of the proposed DropRegion-IFN

ethod with verisimilar real images on the VRICFChar dataset.

ne thousand random Chinese characters were selected for train-

ng and the remainder used for testing. The training and testing

ample size for each font determined by a random character split

s shown in Fig. 10 . From the figure, a total of 74, 441 samples were

sed for training and 212, 546 for testing. 

Fig. 11 shows the classification confusion matrix of the 30

erisimilar real image font categories. It can be observed that 35%

f WeiBei test samples were classified into XinWei, whereas 24%

f XinWei test samples were misclassified as WeiBei. This could be

xplained by their visual similarity, shown in Fig. 12 (a). Addition-

lly, the Chenxudong typeface achieved the worst accuracy of 51%

mong all 30 categories. Fig. 12 (b) visualizes some images that cor-

espond to Chenxudong and its three most easily confused fonts,

henjishi, Jingboran, and Xujinglei, which demonstrates the subtle
nter-class variations among them. The misclassification of Chenx-

dong as Chenjishi, HuangCao, and Xujinglei was as high as 8%,

%, and 15%, respectively. Furthermore, HuPo achieved the high-

st accuracy of 97%. The total average accuracy for each font cate-

ory reached as high as 90.02%, which shows that the proposed

he method is very promising for Chinese font recognition with

erisimilar real images. 

Furthermore, Fig. 12 (c) and (d) show example test images that

ere correctly and incorrectly classified by our method, respec-

ively. Remarkably, our model was robust to a cluttered back-

round, slight amount of distortion or orientation, and lighting

ariation, shown in Fig. 12 (c). However, in the case of serious text

egradation, for example, very low resolution, extremely noisy in-

ut, and much cluttered background, shown in Fig. 12 (d), the algo-

ithm failed. 

.3.2. Segmentation-free-based text block font recognition 

.3.2.1. Results on SCF_TDB_25. We performed eight sets of exper-

ments to evaluate segmentation-free text block font recognition

n SCF_TDB_25. We followed the dataset partition scheme intro-

uced by Tao et al. [43] The results were shown in Table 12 . An

verage accuracy of 99.78% was achieved when TrNum and TsNum

ere 30 and 10, respectively, and an average accuracy of 99.28%

as achieved when TrNum and TsNum were 20 and 20, respec-

ively. 

We compared our segmentation-free recognition system with

he segmentation-based system described in Section 5 and four

epresentative state-of-the-art systems, LBP + SVM, Gabor + WED [3] ,

parse discriminative information preservation [10] (SDIP), and

arginal Fisher’s analysis [33] (MFA). As Table 13 showed, the pro-

osed segmentation-free-based method achieved the highest ac-

uracy of 99.78% when the training number ( TrNum ) was 30 and

he test number ( TsNum ) was 10. Similarly, the highest accuracy of

9.28% was achieved when TrNum and TsNum were both 20. These

esults can be attributed to the design of the deep IFN and the

esign of DropRegion. The proposed segmentation-based method

chieved 96.90% and 96.80% accuracy for two different training

amples, thereby ranking second among the systems. Compared

ith other handcrafted features (i.e., LBP and Gabor features), deep

FN automatically discovers the features of font recognition within

n end-to-end learning framework, which proves to be a power-

ul method for feature learning. The proposed DropRegion method

mproves the performance of IFN because it significantly increases

he number of training samples and can be regarded as an effec-

ive regularization technique. 

.3.2.2. Results on SCF_TDB_280. We justified the adaptability

o font category scale by conducting experiments on the

CF_TDB_280 dataset. Table 14 shows the results for the cases of

rNum/TestNum = 160/160 and TrNum/TestNum = 240/80. As shown

y the high accuracies of approximately 97% for both cases, the

roposed segmentation-free text block font recognition method

dapted well to the large font classes. 

.3.2.3. Results on VRICFTextblock. We evaluated the perfor-

ance of the proposed segmentation-free-based text block font
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Fig. 10. Training and testing sample size for each font denoted as “(Font Class Index) Font name (Training No., Testing No.)”. (1) Hei (2836, 8189); (2) XiHei (2124, 6299); (3) 

YueHei (2261, 6520); (4) MeiHei (5736, 7775); (5) MeiHei (2726, 7629); (6) YaYuan (2802, 7883); (7) XingKai (2262, 6510); (8) Kai (2340, 6616); (9) FangSong (3025, 8657); 

(10) Song (2250, 6293); (11) ZhongSong (2552, 7553); (12) ZongYi (2986, 8497); (13) HuoYi (2606, 7622); (14) CuQian (2274, 6560); (15) GuangBiao (2794, 7982); (16) HuPo 

(2576, 7297); (17) LingXin (1913, 5351); (18) WeiBei (2727, 8117); (19) XinWei (2516, 7095); (20) YaoTi (2630, 7561); (21) YouYuan (2317, 6739); (22) LiShu (2170, 6008); (23) 

ShuangXian (1715, 4986); (24) HuangCao (2082, 5793); (25) Shu (3526, 10,069); (26) Chenjishi (3065, 8600); (27) Chenxudong (1696, 4960); (28) Jingboran (1773, 5081); 

(29) Maozedong (2737, 7498); (30) Xujinglei(2424, 6806). 

Fig. 11. Confusion matrix for 30 font classes of VRICFChar indexing from 1 to 30. 
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Fig. 12. (a) Samples from easily confused typefaces WeiBei and XinWei. (b) Samples from Chenxudong and the other three easily confused typefaces: Chenjishi, Xujinglei, 

and HuangCao. (c) Test samples that were correctly classified. (d) Test samples that were incorrectly classified. 

Table 12 

Recognition accuracy (%) of multiple groups of segmentation-free text block font recognition experiments. G1–G8 

denote eight groups of experiments. TrNum is the number of training samples for one font. TsNum is the number of 

test samples for one font. 

Dataset G1 G2 G3 G4 G5 G6 G7 G8 Average 

T rNum = 30 T sNum = 10 99.6 99.92 99.9 99.9 99.96 99.58 99.66 99.72 99.78 

T rNum = 20 T sNum = 20 99.57 99.4 99.29 98.93 99.82 99.6 98.3 99.3 99.28 

Table 13 

Recognition accuracy (%) of the proposed method and other state-of-the-art meth- 

ods. 

Methods T rNum = 30 

T sNum = 10 

T rNum = 20 

T sNum = 20 

Proposed (segmentation-free) 99.78 99.28 

Proposed (segmentation) 96.90 96.80 

LBP + SVM 95.35 94.20 

Gabor + WED [3] 95.45 94.48 

SDIP [10] 93.00 91.60 

MFA [33] 91.60 90.10 

Table 14 

Evaluation of recognition accuracy (%) achieved on 

SCF_TDB_280. 

TrNum/TsNum DropRegion-IFN 

160/160 96.92 

240/80 97.33 

r  

T  

N  

s  

Table 15 

Training font sample size and recognition accuracy (%) on 

VRICFTextblock. 

TrNum/TsNum Training font sample # Accuracy 

160/160 10,743 ± 92 97.99 ± 0.034 

240/80 16,039 ± 288 98.42 ± 0.109 

a  

a  

r  

f  

s  

m

7

 

I  

e  

g  

e  

i  

f  
ecognition on verisimilar real image dataset VRICFTextblock.

wo training/testing split schemes were adopted, that is, Tr-

um/TsNum = 160/160 and TrNum/TsNum = 240/80. Each split

cheme was replicated five times randomly. Table 15 reports the
verages and standard deviations of the training font sample size

nd recognition accuracy. It can be observed that the deviation of

ecognition accuracy was very small, even when the number of

ont samples fluctuated for a different random split. The results

how the semantic invariance of the proposed font recognition

ethod. 

. Conclusions 

In this paper, we presented a new method called DropRegion-

FN, for Chinese font recognition. This method highlights the el-

gant design of a deep font network, namely IFN, which inte-

rates a modified inception module, CCCP layers, and global av-

rage pooling. DropRegion, a new data augmentation and regular-

zation technique, is proposed for seamless embedment in the IFN

ramework, enabling an end-to-end training approach and enhanc-
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ing model generalization. Furthermore, we proposed two meth-

ods to construct both single character and text block Chinese font

datasets. One was based on Microsoft Word software editing and

image scanning to form four neat synthetic datasets, including

25-category basic datasets and 280-category extended datasets;

and the other was a scene-guided text rendering method to form

verisimilar real image datasets VRICFChar and VRICFTextblock. Ex-

tensive experiments were conducted on all six datasets. The recog-

nition accuracies on the neat synthetic datasets were all over

97%, using either single-character-based or segmentation-free text

block-based font recognition. With regard to verisimilar real image

datasets, an accuracy of 90.02% on VRICFChar and approximately

98% on VRICFTextblock were achieved, which demonstrates that

the proposed method was very promising for Chinese font recog-

nition with real images. 

In future research, we will construct a larger verisimilar real

image Chinese font dataset, e.g., 280 categories, considering more

practical scenarios of applications. For example, each text block

would contain a different number of Chinese characters; the size of

each character in the text block would vary greatly, and the char-

acter spacing in the same text block would be different. A sharp

increase in class numbers together with the complex diversity just

mentioned will result in greater challenges for font recognition

with verisimilar real images. Additionally, we particularly intend

to collect a small number of labeled real-world text images and

determine whether there is any difference between the verisimilar

font samples and manually collected real images. Finally, we would

like to extend the DropRegion-IFN method to handle the practical

cases in which font class samples are scarce. 
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